
Rigorous study of the spin-  Ising model in a layered magnetic field at low temperatures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 1059

(http://iopscience.iop.org/0305-4470/30/4/009)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 1059–1068. Printed in the UK PII: S0305-4470(97)68913-1

Rigorous study of the spin-12 Ising model in a layered
magnetic field at low temperatures

Lahoussine Laanait† and Najem Moussa‡
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Abstract. We investigate the low-temperature phase diagram of the three-dimensional Ising
model under an external layered magnetic field,h. For h = 2 we observe that there exists an
infinite number of layered ground states and we prove that, at low temperatures, the external
Gibbs state (the ‘bilayer’ phase) is unique. Forh < 2 there exists two ferromagnetic ground
states. Moreover, there exists in the plane(T , h) an open line of phase coexistence between the
‘bilayer’ phase and the ‘+’ and ‘−’ ferromagnetic phases.

1. Introduction

The spin-12 Ising model under a layered magnetic field has been used to study the observed
features of4He crystal shape evolution [3]. The model is described by the usual Ising
Hamiltonian combined with a term representing the layered magnetic field. Namely,

H = H0+Hµ = −
∑
〈i,j〉

σiσj − h
[∑
i∈31

σi −
∑
i∈32

σi

]
(1.1)

where

H0 = −
∑
〈i,j〉

σiσj − 2

[∑
i∈31

σi −
∑
i∈32

σi

]
and Hµ = −µ

[∑
i∈31

σi −
∑
i∈32

σi

]
where,µ = h − 2 and the sitei ≡ (xi, yi, zi) ∈ Z3 and31 (resp.32) is defined by the
set of sitesi for which zi is odd (resp. even) andσi = ±1 are the Ising spins. The first
sum in (1.1) is over all nearest neighbours and the two last sums are over sites of the two
different sublattices with opposite magnetic fields. We observe that the model under study
is similar to the anisotropic nearest neighbour Ising (ANNI) model already studied, in the
case of ferromagnetic interactions by Fisher [1], and Griffiths and Weng [2]. Indeed the
ANNI model with competing interactions can be obtained from the formula (1.1) by using
the transformation:

{σi}i∈32 to {−Si}i∈32 and {σi}i∈31 to {Si}i∈31.

Namely,

H = −
∑

〈i,j〉∈31 or 32

SiSj +
∑

〈i,j〉/i∈31 and j∈32

SiSj − h
∑
i∈3

Si.
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We recall that the two-dimensional spin-1
2 Ising model in a layered magnetic field

was studied in [4], by using the finite size scaling analysis, where the phase diagram
contains the two coexistence ferromagnetic phases (‘+’ and ‘−’) and the bilayer phase
(which corresponds to the spin in successive layers being alternatively ‘+’ and ‘−’, i.e.
+−+−+− · · ·). On this phase diagram asecond-order phase transition line between the
ferromagnetic phases and the bilayer phase was shown.

Our purpose in this paper is to study the three-dimensional case by the low-temperature
rigourous methods and to prove that the model exhibits a low-temperaturefirst-order phase
transition line between the ferromagnetic (‘+’ and ‘−’) phases and the ‘bilayer’ phase.

We first notice that the HamiltonianH0 has an infinite number of ground states. For
example, if we take the (+)-ground state (corresponding to siteσi = +1, ∀i ∈ 31 ∪ 32)
and flipping all the spins in an arbitrary number of planes of type32 we get another ground
state (cf figures 1(a) and (b)). The number of degeneracy is [2.2(L/2) − 1] whereL is the
size of the lattice. The reason is that, if all the spins of a plane of kind31 are up (resp. if
those of kind32 are down) the spin of the two planes setting strictly over and under and
which are of kind31 (resp. which are kind32) are arbitrary. The term ‘−1’ appeared in
the number of degeneracy because of the bilayer structure. Therefore the question is: How
many phases does the model, with the HamiltonianH0, have at non-zero temperatures? A
partial answer will be given by considering the single-site excitations which are obtained

Figure 1. A type of ground state of the model forh = 2: taking a (+)-ground state (resp.
(−)-ground state) and changing any plan of (+)-spins of kind32 (resp. any plan of (−)-spins
of kind 31) do not cost any energy. The ‘bilayer’ ground state is illustrated in (b).
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Table 1. Single-site excitations.

Type of a single-site excitation Energy of the excitation

Type 1 z-axis↑ 32 + 32 +
31 + + + → 31 + − + e1 = 16
32 + 32 +

Type 2 z-axis↑ 32 − 32 −
31 + + + → 31 + − + e2 = 8
32 − 32 −

Type 3 z-axis↑ 31 + 31 +
32 + + + → 32 + − + e3 = 8
31 + 31 +

Type 4 z-axis↑ 31 + 31 +
32 − − − → 32 − + − e4 = 8
31 + 31 +

by flipping a spin+ (resp.−) in the 32-plane (resp.31-plane) (see table 1 where all
the possible single-site excitations of the ground states are pictured). Hence forT > 0
the degeneracy is lifted because different arrangements of the layer magnetizations have
different entropies. Moreover, the bilayer ground state is the unique ground state which has
a largest number of lowest-energy excitations and then more entropies. Therefore, it will be
expected that it is the unique dominant ground state (here the domination means that there
is a finite family of ground states having a greater number of lowest-energy excitations,
and then the minimal free energy, than all the other ground states). In the case under our
investigation, the domination means the existence of a unique pure phase ‘bilayer phase’ at
low temperatures. We notice that whenever one gets a good control of the contribution of all
the lowest-energy excitations (elementary excitations) then the contribution of all the higher-
order excitations would not qualitatively change the picture. Clearly, in dimension two, if
we consider the (+)-ground state and flip a segment with an arbitrary length of up spins on
32; one observes that we only have an energy equal to that corresponding to a single-site
excitation. Then it is obvious that a control of the lowest-energy excitations is lacking
and the model is said to be irregular (the regularity means that the energy of an excitation
increases with the size of its support [5]). It follows that in the two-dimensional case the
nature of the phase transition between the ferromagnetic phases and the bilayer phase is
still an open problem.

For the three-dimensional case one can easily see that the model is regular but the
energy cost may be only proportional to the perimeter of the surface delimiting the domains
containing two different coexisting ground states. Then the Peierls condition [5], which is
verified for a large class of models with afinite number of ground states, is lacking for our
HamiltonianH0.

To resolve the problem we use the earlier extension of the Pirogov–Sinai (PS) theory of
first-order phase transitions [6] to certain models with an infinite number of ground states.
This extension was performed by Bricmont and Slawny (BS) [7] under two assumptions
satisfied by our HamiltonianH0. Namely,

• the ground states have layered structures, then the so-called conditionL in [7] (or the
layered condition which means that the ground states of the model is not relatively too
large) is satisfied;
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• a configuration which is ‘excited’ in a small region of the lattice surrounded by a region
with a configuration having the lowest possible energy can be exchanged (‘retouched’) in
this region in a unique way so that the energy has the lowest possible value everywhere
(this is the retouch property in [7], see figure 3 for an example).

2. Ground states of the model

To define more precisely the structure of the ground states of the model we write the
HamiltonianH in terms of a potential,8, such that,

H =
∑
c

8c H0 =
∑
c

80,c Hµ =
∑
c

8µ,c (2.1)

where,

80,c = − 1
4

[ ∑
〈i,j〉⊂c

σiσj

]
− 1

4

[ ∑
i∈31∩c

σi −
∑
i∈32∩c

σi

]
and

8µ,c = −µ
8

[ ∑
i∈31∩c

σi −
∑
i∈32∩c

σi

]
and c is an elementary cube of the latticeZ3. We verify that there exists a configuration
Y such that8c(Y ) = φc = minX(8c(X)) for any cubec. It is them-potential condition in
[5].

The structure of the ground states of the HamiltonianH0 is simply given by comparing
the energies corresponding to different configurations on a given cube,c. We obtain that
the only configurations which give rise to a ground state are those in figure 2. We denote
F -ground states(GF ) (corresponding to ‘+’ and ‘−’ ferromagnetic ground states) the
configurations in which all the cubes are of kindF . TheB-ground state(GB) (corresponding
to the bilayer ground state) is the configuration in which all the cubes are of kindB. Hence,
whenµ < 0 the model only has the twoF -ground states (related by spin–flip symmetry
of the Hamiltonian for translation invariant states). Forµ > 0 there is only one ground
state (bilayer ground state). But forµ = 0 the model exhibits an infinite number of ground
states.

Figure 2. The three regular cubes; all other cubes are irregular. (Here the full (resp. empty)
circles denote the (+)-spin (resp. the (−)-spin).
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Figure 3. (a) A type of a removable excitation; the hatched cubes set the support of this
elementary excitation. (b) A type of non-removable excitation; there is no global ground state
equal to (−) and (+) on their repective domains. The dotted cubes set the support of this
elementary excitation (resp. to BS theory).

3. The low-temperature phase diagram

To construct the low-temperature phase diagram of the model in the parameter space(T , µ)

for µ small enough(µ = h− 2), one proceeds as follows.
• We consider an excitation of a given ground state,G, and we define the set of its

elementary excitations as the family of disjoint-connected components having an energy
greater than the energy ofG.
• We fix a cut-off energyE and we consider all the excitations whose energy (relative

to G) does not exceedE. Since the model is regular, the set of all these excitations (we
call theG-restricted ensemble) forms a gas of elementary excitations with a finite number
of species interacting via a hard-core exclusion potential [5]. Namely, letχ

G,E
3 be the

G-restricted ensemble, then the partition function with a boundary conditionG is given by:

ZE(3/G) =
∑
X∈χG3

exp

(
− β

∑
c∩36=∅

8c(X)

)
. (3.1)

To compute the restricted free energy,f ER (G), we need the following algebraic
formalism.
• We introduce a formal HamiltonianH(ϑ) = ∑

X ϑ(X)H(X). Here ϑ is a
multiplicity function defined on the set of all the elementary excitations ofG such that
ϑ(X) = {0, 1, 2, . . .},
• To any configuration,Z ∈ χG,E3 , we associate the characteristic multiplicity function,
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ϑZ, defined on the set of elementary excitations ofZ, such that:

ϑZ(X) =
{

1 if X is a component ofZ

0 otherwise.

• Finally, on the set of multiplicity functions, we define the weightφE(ϑ,G)

φE(ϑ,G) =
{

exp(−βH(ϑ)) if ϑ = ϑZ for someZ ∈ χG,E3

0 otherwise.

Then, the partition function of theG-restricted ensemble is given by:

ZE(3,G) = exp

[
− β

∑
C∩36=∅

8C(G)

] ∑
ϑ/H0(ϑ)6E

φE(ϑ,G) (3.2)

and the cluster expansion [7] gives

log(ZE(3,G)) = −β
∑

C∩36=∅
8C(G)+

∑
ϑ/H0(ϑ)6E

φTE(ϑ,G). (3.3)

We recall that the Ursell functions,φTE(ϑ,G), are nonzero (and equal, up to a combinatorial
factor, to e−βH(ϑ)) only for ‘connected’ϑ (i.e. the elementary excitations, for whichϑ is
nonzero, are vertices of a connected graph).

We notice that for a translation invariant,G, by vectors of a subgroup̂Z3 ⊂ Z3, the
convergent cluster expansion (3.3) is given by

log(ZE(3/G)) = −|3|f ER (G)+O(|∂3|)
where|∂3| is the number of sites in the boundary∂3 of 3, and

f ER (G) = βeG − |Z3/Ẑ3|−1
∑

ϑ(modẐ3)/H0(ϑ)6E

φTE(ϑ,G) (3.4)

where

eG =
∑
c⊂3

φc(G)

and |Z3/Ẑ3| is the number of classes of the quotient groupZ3/Ẑ3.
As we discussed in the preceding sections, there exists ground states ofH0 which are

non-periodic, then we need a local version of the formulae (3.4) by introducing the notion
of the effectivepotential which reaches its minimum value only for the dominant ground
states.

More precisely, we let the weight functionsC→ χ(c,C) andϑ → χ(c, ϑ) on the sets
of cubes and multiplicity functions respectively such that for eachD andϑ we have∑

c

χ(c,C) = 1
∑
c

χ(c, ϑ) = 1

then it follows that the energy of the ground state per cube is

eG(c) =
∑
C
χ(c,C)8C(G)

and we define the effective potential as

f ER (G, c) = βeG(c)−
∑

ϑ/H0(ϑ)6E
χ(c, ϑ)φTE(ϑ,G). (3.5)
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We notice that global free energy,f ER (G) is a sum of local contributions. Since here, we
only consider the elementary excitations in theG-restricted ensemble i.e.ϑ = ϑX, where
X is the elementary excitation, then it follows from (3.4) that

φTE(ϑX,G) = φE(ϑX,G) = e−βH(ϑx) and χ(c, ϑX) = 1/nc(X)

wherenc(X) is the number of excitations of kindX intersecting the cubec. Thus, we
obtain

f
E=E1
R (G, c) = βeG(c)− ( 1

8)n1(G, c)e
−βE1 +O(e−βE2) (3.6)

here the contributions ofµ are neglected in the exponents, because the phase diagram is
only given in the neighbourhood ofµ = 0.

The termn1(G, c) is the number of excitations of type 2, 3 or 4 (see table 1) in the
ground stateG intersecting the cubec, and the energy is

eG(c) =
∑
Cic
( 1

27)8C(G)

the sum is over all cubesC intersecting the cubec. Finally, we find the low-temperature
phase diagram by comparing the effective potentials associated to the different ground states.

The main results of the (BS) theory are contained in theorems A and B.

Theorem A.WhenH0 has the retouch property and the conditionL and that there is a finite
family ζ ∗ of dominant ground states, all equivalent under symmetries ofH0. Then for low
temperatures there are exactly|ζ ∗| different pure phases (|ζ ∗| is the number of elements in
the family ζ ∗), each of them being a small perturbation of the corresponding ground states.

Theorem B.The coexistence line of the pure phases corresponding to dominant ground states
from the asymptotic one up to order exp(−βED) whereD is the order yielding domination.

More precisely letµ(T ) be the coexistence line in the phase space(T , µ) andµD(T )
its asymptotic line up to orderD, then by theorem B,

1

T
[µ(T )− µD(T )] = O(e−

ED+1
T ).

To apply these results let us introduce thestructure constantsnic(G, c), (i = 1, 2, 3),
which determine completely the ground stateG in the set of cubes intersecting a given cube
c. We definenic(G, c) for i = 1, 2 such that,

n1c(G, c) =
{

1 if c is aB-cube

0 otherwise
and n2c(G, c) =

{
1 if c is anF -cube

0 otherwise.

To definen3c(G, c) we consider a family of three cubes{c+, c, c−} such thatc+ (resp.c−)
is a cube sitting exactly over (resp. under) the cubec. Then the number ofB-cubes in such
a family {c+, c, c−} is equal ton3c(G, c).

In terms of these structure constants we rewrite the effective potential in (3.6) up to
first order and we get,

f
E=E1
R (G, c) = −β

[
3+ µ

3
n3c(G, c)

]
− 1

2[n3c(G, c)+ n2c(G, c)− n1c(G, c)]e
−βE1. (3.7)

Settingµ = 0, one obtains

f
E=E1
R (G, c) = −3β − 1

2[n3c(G, c)+ n2c(G, c)− n1c(G, c)]e
−βE1.

The dominant ground states are those for which the number{n3c(G, c) + n2c(G, c) −
n1c(G, c)} is maximal. Thus the bilayer ground state is the unique dominant ground state.
Hence, by theorem A, ath = 2 there is exactly one pure phase at low temperatures
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corresponding to the bilayer ground state. Now, by settingf
E=E1
R (GF , c) = f E=E1

R (GB, c)

one obtainsµF,BD=1 = − T
2 e

−E1
T . Therefore, by theorem B, there exists a lineT → µF,B(T )

defined forT small enough such that

1

T
[µF,B(T )− µF,BD=1(T )] = O(e−

E2
T )

and then the low temperature phase diagram is as follows.
For any temperatureT ,

• if µ > µF,B(T ), the Gibbs state of the model is the unique bilayer phase,
• if µ < µF,B(T ) the phase diagram exhibits the coexistence of two ferromagnetic phases.

Finally, atµ = µF,B(T ) all these three phases coexist (see figure 4).

Figure 4. The low-temperature phase diagram of the layered field Ising model.

4. Conclusion

The low-temperature phase diagram of the three-dimensional Ising model in a layered
magnetic field is found in which we pass from the ferromagnetic phases to the bilayer
phase by a first-order transition as we vary the layered magnetic field. Further, we have
determined the characteristic of the transition line at low temperature.

Moreover, the model in two dimensions is studied in [4] using the finite size scaling
approximation method where the phase diagram shows a second-order phase transition line
between the ferromagnetic phases and the bilayer phase. In this paper, we have proved,
using the BS theory, that in three dimensions the phase transition is of first order.

Appendix. The retouch property of the model

To prove the retouch property we need to introduce some definitions. Namely, for a non-
negative number,l; and for a domain3, we define anl-boundary,∂l3, of 3 such that
∂l3 = {a ∈ 3 : dist(a,3C) 6 l} and we also define anl-neighbourhood, [3, l], of 3
such that [3, l] = {a ∈ Z3 : dist(a,3) 6 l}. Here dist(a,3) = minb∈3(dist(a, b)) and
dist(a, b) = maxi |ai − bi |.

For a finite subset3 in Z3, we define the set of partial configurations,χ3, as the set
of configurations,X, whose domain (dom(X)) is 3. The subsets of the configurations,X,
in χ3 satisfying8c(X) = φc, c ⊂ 3; (with φc = minX(8c(X))) are called local ground
states. ForZ3 the local ground states lead to the usual global ground states.

A partial configuration,X, is an excitation of a local ground state,G, if its restriction
to the l-boundary of its domain corresponds to the local ground state,G. We say that a
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Figure A1. Diagram for a proof of the retouch property of the model.

partial configurationX is contained in a partial configurationY , X ⊂ Y if Y is equal toX
on dom(X). An excitation which does not properly contain another one is an elementary
excitation.

To an excitation,X, we associate its energy (relative to a local ground state),

H0(X) =
∑

c⊂dom(X)

[80,c(X)− φ0,c].

We define the support ofX, (supp(X)), as the set of cubes (contained in the domain ofX)
for which the term,80,c(X)− φ0,c, is strictly positive.

Finally we recall that a model has the retouch property if for any energy,E > 0, there
existsl(E) such that for alll > l(E) all the elementary excitations with energy smaller than
E are removable. It means that the ground states extend uniquely from the boundaries.

Let us consider a parallelepiped formed by the union of elementary cubes and define
the level of a cubec in that parallelepiped asz0(c) = minz(z(M ∈ c)), whereM is a lattice
site with a coordinate,z(M), on thez-axis.

Since the ground states have layered structures perpendicular to thez-axis, we remark
that all the cubes with the same level in the parallelepiped are of the same type (F - or
B-cubes in figure 2).

Since our model is regular then for a given elementary excitation whose energy
H0(X) < E, there exists a finitel(E) such that the support ofX is contained in a smaller
parallelepiped,P0, which in turn is contained in the interior of another parallelepiped which
we denote

≈
3, contained in dom(X) (figure A1).

Now we consider a domain3 defined as the complement ofP0 in
≈
3 (i.e. a domain

consisting of the parallelepiped
≈
3 with a cut-out smaller parallelepipedP0). One obtains

that3 is the union of six overlapping parallelepipeds(3xi,3yi,3zi; i = +,−).
First suppose that all the cubes of3 areF -cubes, i.e. the surrounding ground state is

theF -ground state, then one can uniquely extend the ground state of3 to the ground state
of
≈
3. Second, suppose that one cube of3 is a B-cube of levelz0 and suppose that it is

contained in3x,+, then all the cubes of3x,+ with level z0 areB-cubes. Because of the
overlapping between the parallelepipeds of3x,+ and3y,i(i = +,−) there exists a family
of B-cubes of levelz0 contained in both of them. Therefore, all the cubes of levelz0 in
3y,i(i = +,−) areB-cubes. Now, starting byB-cubes with levelz0 in 3y,i and since
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they overlap with3+,− then, by the preceding remark, one can easily show that all the
cubes of levelz0 of the parallelepiped3x,− areB-cubes. Hence, all the cubes of levelz0

of the parallelepiped3 areB-cubes. That implies that the extension of the ground state
of 3 to that of

≈
3 is unique. Finally if there are many levels withB-cubes occurring in3

one can, in the same manner as above, prove the uniqueness of the extension to a unique
ground state and then conclude the proof.
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